PREDICTING STUDENT PERFORMANCE FROM
THEIR BEHAVIOR IN LEARNING MANAGEMENT SYSTEMS
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Introduction

@ Throughout the curriculum, students’ performance is measured

Formative During courses (How are students doing?)
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Predictive model

@ Decision tree using data early during course
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Summative After courses (Have students attained the required level?)
@ Testing is quite labor intensive (for lecturer and student)
@ Can we test (or cluster) students based on their online behavior?
@ LMS provides accurate insight into students’ online behavior
@ Goal: Non-intrusive formative testing

@ More personalized education

@ Strong students may require additional challenges
@ Weak students may require extra help

@ Course improvements
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connection

@ Decision tree using data later during course
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@ Student performance prediction is major focus of LA and EDM
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(Romero and Ventura, 2013) sz G208 D)

@ Most LA and EDM research used LMS data for summative assessment e R
oraded (3.0/1 .u:||

(Minaei-Bidgoli and Punch, 2003; Morris et al., 2005; Zafra and Ventura, 2009; Macfadyen ::E,T-Ell.:ref,l
and Dawson, 2010; Romero and Ventura, 2013; Zacharis, 2015)

@ Student characteristics and past performance have higher predictive value than LMS data
(Tempelaar et al., 2015; Conijn et al., 2017)

@ Important: include student characteristics and past performance in predictive model

Research questions
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Conclusion

@ Online student behavior is accessible data
to investigate student performance

On-going research:

@ Which properties describe student performance during the course?
@ Learning analytics and educational data mining

@ Do these properties provide insight in an educational context?
Prop P > can be used to extract understandable and useful patterns

@ How can we give the properties in a meaningtul and understandable way to lecturers?
| @ Results can
@ How generally applicable are the results?
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Dataset

@ identify weak /strong students
@ identify course properties that may be improved

@ Lixtracted patterns may help educational institutes and lecturers

@ improve decision making about educational courses

@ improve course quality (informed student differentiation)
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Future work

@ Online educational behavior of 426 Eindhoven University of Technology students
@ Data from 5 courses: 888 students (some students participate in multiple courses)
@ Fall and winter quarters of 20142015

@ Information from Moodle LMS
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it @ Generalization of results is not (yet) known

@ Unclear exactly which features

@ have a large impact on prediction performance
@ make sense in an educational setting
@ are useful for lecturers

@ Different machine learning methods

@ have different classification performance

@result in different types of human readable information
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